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This paper proposes a multi-scale energy based material model for poly-crystalline materials. The model considers the poly-
crystalline, grain and crystal scales, exhibits magnetostriction and hysteresis and is merely based on a set of physical constants. The
model is verified with existing measurement data for different stress levels and is found to provide a good accuracy.
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I. INTRODUCTION

CONTEMPORARY electrotechnical design requires
highly accurate models for ferromagnetic materials which

are capable of representing hysteresis and magnetostriction
effects properly. This is possible using energy based material
models such as the Armstrong model [1] or the multi-scale
model [3], when accomplished with a hysteresis model. The
Armstrong model uses an incremental hysteresis model for a
single-crystal material [2]. The multi-scale model incorporates
Hausers′ hysteresis model for poly-crystalline materials [4],
[7]. In this paper, however, the hysteresis effect is considered
at the grain scale. In contrast to [6], where artificial thresholds
prevent early switching of magnetic domains, here, the grain
scale magnetization of the previous time step is used for
correcting the Boltzmann distribution. The new approach
requires less parameters compared to the Preisach, Jiles-
Atherton and Hauser models and does not demand a tedious
parameter identification work, since the model is merely based
on physical constants which can be looked up in standard
references. Moreover, the proposed approach considers the
magneto-mechanical coupling.

II. VARIOUS SPATIAL MATERIAL SCALES

The material model uses three material scales (Fig. 1): (i) the
poly-crystal scale, which is a representative volume element
consisting out grains with different sizes and orientations;
(ii) the grain scale, consisting of several crystals which are
almost perfectly aligned to each other; (iii) the crystal scale,
consisting of one perfect crystal. The poly-crystal scale takes
the external magnetic field Hext and the external mechanical
stress σext as inputs. The model parameters are a few physical
constants and a user-defined accuracy. The initial conditions
are the grain orientations and initial guesses for the mean
poly-crystal scale/ grain scale magnetizations Mm/ Mg and
magnetostrictive strains εm/ εg, respectively. The initial grain
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Fig. 1. Flowchart of the material model

orientations are obtained as proposed in [8], leading to the grain
scale stresses σg by solving the Eshelby inclusion problem [3],
[5], [10]. Homogeneous elastic properties and a uniform strain
are assumed in the grain representing the inclusion.
Hext and σg are the inputs for the crystal scale, allowing

to calculate the three standard energy functions [1], [3] and a
new energy function modelling hysteresis (see Section II-A).

The Boltzmann distribution on the energy functions leads
to the grain scale magnetizations Mg and magnetostrictions εg
(see Section II-B). When Mg and εg converged, a weighted
average procedure is performed, according to the Eshelby
inclusion problem [3], [5], [10]. The procedure is repeated until
convergence is reached at the poly-crystal scale.



A. Crystal scale

The energy functions calculated at the crystal scale are
[1], [3]: (i) the Zeeman energy WH based on the saturation
magnetization Ms, (ii) the magneto-crystalline anisotropy en-
ergy Wan based on the crystal anisotropy constants K1 and
K2 and (iii) the stress induced anisotropy energy Wσ based
on saturation magnetostrictions λ100 and λ111. The additional
energy function modelling hysteresis is described as:

Whys = −µ0
Ms

χ0
(αM1Mhys1 + αM2Mhys2 + αM3Mhys3)

(1)
This energy function stands alone (see Fig. 1) and will increase
the obtained anhysteresis probability, closest to grain scale
magnetization in the previous time step Mhys (See Section
II-B). Here, χ0 is the grain scale magnetic susceptibility which
is not measured as a single poly-crystal constant [3], but
simulated for every grain in the first two time steps.

B. Grain scale

Due to crystal defects, not all domains have the same
orientation, even in a single grain. This is taken into account
by the Boltzmann distributions Pα, Phys and Pg:

Pα =
exp(−As(WH +Wan +Wσ))∫
α
exp(−As(WH +Wan +Wσ))

(2)

Phys =
exp(−βAsWhys)∫
α
exp(−βAsWhys)

(3) Pg =
PαPhys∫
α
PαPhys

(4)

The standard Boltzmann distribution Pα includes the parameter
As = (3χm0)/(µ0M

2
s ) as a measure for the regularity of

the crystal. In this paper, the poly-crystal scale magnetic
susceptibility χm0 is replaced by the grain scale susceptibility
χ0. The additional energy function (1), in the crystal scale,
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Fig. 2. Comparison between the results from the model, indicated in red, and
the reference results reported in [9], indicated in blue.

models the hysteresis by increasing the obtained anhysteretic
probability (2) (using the three standard energy functions),
closest to Mhys. An additional Boltzmann distribution Phys

with a correction factor β (here set to 1.2, 1 and 0.9 for
respectively 0, −25 and −50 MPa) is introduced. The
correction factor β models the pinning effect, as suggested by
Hauser [7], which was not considered for obtaining As in [3].
The combination of both (see (4)) allows to predict Mg and
εg as in [1] and [3], but with inclusion of the hysteresis effect.
The method is valid for alternating as well as for rotating
magnetic fields.

III. VALIDATION

The simulated results are compared to measurements on
Fe-Si3% reported in [9]. Fig. 2 shows that the results from
the model, indicated in red, are in good agreement with the
reference results, indicated in blue. The remaining differences
are attributed to unknown internal stresses, possibly introduced
by the manufacturing process.

IV. CONCLUSION

An energy based material model is extended by a hysteresis
model inserted at the grain scale. Although based on a small
set of parameters, the extended model shows a good agreement
for a poly-crystalline material with this approach it’s possible
to link micro- and macroscale effects by a reliable model.
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